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Wave formation in laminar flow down an inclined plane 
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Department of Engineering, University of Cambridge 
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SUMMARY 
This paper deals theoretically with a problem of hydrodynamic 

stability characterized by small values of the Reynolds number R. 
The primary flow whose stability is examined consists of a uniform 
laminar stream of viscous liquid running down an inclined plane 
under the action of gravity, being bounded on one side by a free 
surface influenced by surface tension. The problem thus has a 
direct bearing on the properties of thin liquid films such as have 
important uses in chemical engineering. 

Numerous experiments in the past have shown that in flow 
down a wall the stream is noticeably agitated by waves except 
when R is quite small ; on a vertical water film, for instance, waves 
may be observed until R is reduced to some value rather less 
than 10. The present treatment is accordingly based on methods 
of approximation suited to fairly low values of R, and thereby avoids 
the severe mathematical difficulties usual in stability problems at 
high R. The formulation of the problem resembles that given 
by Yih (1954); but the method of solution differs from his, and 
the respective results are in conflict. In particular, there is dis- 
agreement over the matter of the stability of a strictly vertical 
stream at very small R. In contrast with the previous conclusions, 
it is shown here that the flow is always unstable: that is, a class 
of undamped waves exists for all finite values of R. However, the 
rates of amplification of unstable waves are shown to become very 
small when R is made fairly small, and their wavelengths to become 
very large ; this provides a satisfactory explanation for the apparent 
absence of waves in some experimental observations, and also for 
the wide scatter among existing estimates of the ' quasi-critical ' 
value of R below which waves are undetectable. In view of the 
controversial nature of these results, emphasis is given to various 
points of agreement between the present work and the established 
theory of roll waves ; the latter theory gives a clear picture of the 
physical mechanism of wave formation on gravitational flows, and 
in its light the results obtained here appear entirely reasonable. 

The conditions governing neutral stability are worked out to 
the third order in a parameter which is shown to be small ; but a 
less accurate approximation is then justified as an adequate basis for 
an easily workable theory providing a ready check with experiment, 
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This theory is used to predict the value of R at which 
observable waves should first develop on a vertical water film, 
and also the length and velocity of the waves. These three 
predictions are compared with the experimental results found 
by Binnie (1957), and are substantially confirmed. 

1. INTRODUCTION 
The flow of liquid in a thin film down a solid wall may often be observed 

in everyday life, as when rain water runs in a sheet down a window pane, 
or when paint, or mayonnaise, drains from some solid object which has been 
dipped in the liquid. It is also a subject of practical importance in chemical 
engineering, and has been studied by many experimental workers concerned 
with that field (e.g. Kirkbride 1934; Friedman & Miller 1941 ; Grimley 
1945 ; Dukler & Bergelin 1952). The character of the flow has been shown 
to depend largely on the Reynolds number R = Q/v ,  where Q is the rate 
of volume flow per unit span of the stream and v the kinematic viscosity 
(= viscosity p/density p), although the influence of surface tension clearly 
may be important in most of the cases studied. In flow down a vertical 
plane, for example, the motion is apparently turbulent when R is greater 
than about 300 (Jeffreys 1925). When R is less than this, the mean flow 
is evidently governed by a law of laminar friction, and the mean depth is 
found to be approximately that given by the simple theory due to Nusselt 
(1916) and Jeffreys (1925) which assumes a uniform flow. Nevertheless, 
waves are to be observed on the free surface throughout almost the entire 
range of laminar flow, the possible exception being when R is reduced below 
a certain small value which may be about 4 if the liquid is water. 

The apparent absence of waves on very thin films has led several 
investigators to assume that, for the flow down a vertical plane, there exists 
a critical value of R below which uniform laminar flow is entirely stable: 
that is, the flow is in a condition where small disturbances of every kind are 
suppressed. The well-proven significance of the Reynolds number in its 
more familiar contexts has undoubtedly encouraged this belief. Indeed, 
numerous estimates of the supposed critical Reynolds number have been 
stated (see Binnie (1957) for a review of some of them). On the theoretical 
side the work of Kapitza (1948) led to an estimate of 5.8 for the critical 
value, and that of Yih (1954) gave about 1.5. 

In the present paper it will be argued that a critical Reynolds number 
in the usual sense does not exist for the particular case of uniform flow down 
a vertical plane. In other words, for all finite Reynolds numbers there is 
a class of wave-like disturbances which undergo unbounded amplification 
according to a linearized theory. The presence or absence of surface 
tension does not alter this general conclusion. The theory is, however, 
far from being incompatible with the various experiments seeming to 
indicate a critical Reynolds number, since an alternative explanation is 
readily forthcoming for the absence of observable waves. In fact the new 
explanation demonstrates a unity among various experimental results where 
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the respective values of the supposed critical Reynolds number are con- 
flicting. On the other hand, it is necessary to dispute previous theoretical 
work on this subject. 

The problem to be considered could be adapted to a simplified treatment 
akin to the usual theory of ‘ roll waves ’ on turbulent streams. In the latter 
only the ‘ overall ’ features of the flow are considered : that is, the frictional 
force against the stream is taken to vary in some prescribed way with the 
local depth and mean velocity and to be independent of the finer details 
of the motion, while the action of gravity (whose component perpendicular 
to the flow tends to keep the free surface flat) is expressed in a momentum 
equation based on the mean velocity. In his theory of roll-wave formation, 
Dressler (1952) derived a stability condition for a generalized law of friction, 
which extends to the example of laminar flow in question here. Thus, as 
the terms representing the restoring forces can easily be modified to 
encompass surface tension as well as gravity, immediate use may be made 
of his result to estimate when waves should appear. In $ 5  of this paper 
the result following from Dressler’s theory is shown to correspond to a 
limiting case of the present theory; but it is appropriate to note here that 
an approach to the problem directly by way of Dressler’s work effectively 
demonstrates the instability inherent at all Reynolds numbers when the 
plane is vertical. This is particularly encouraging since roll-wave theory 
keeps a much closer connection with physical reasoning than is possible 
in the present treatment. 

Since the primary (waveless) flow is laminar and completely known, the 
stability problem can be formulated mathematically in a more precise way 
than that of roll-wave theory. The formulation is made in the well-known 
manner which has been extensively used for stability problems concerned 
with laminar flows between fixed boundaries (cf. Lin 1955). It is implicitly 
assumed that the Fourier components of an arbitrary small disturbance 
are dynamically independent; thus the solution for a wave of arbitrary 
period and velocity constitutes a complete solution. The equations of 
motion for a wave of small amplitude are then set up, together with appro- 
priate boundary conditions ; this defines a characteristic-value problem 
leading to a relationship among the essential parameters of the primary 
flow and the wave. There is particular interest in the conditions under 
which the wave is propagated unchanged (i.e. its velocity is a real constant), 
since these refer to the dividing line between stability and instability. 
These few sentences merely outline a very well-known type of problem, 
and we may refer to the book by Lin (1955) for an extensive account of the 
subject. The novelties of the present application are, first, the introduction 
of boundary conditions appropriate to a free surface under the action of 
gravity and surface tension, and, second, the use of a method of approximate 
solution suited to fairly small Reynolds numbers. The latter avoids the 
serious difficulties which beset many of the well-known problems of 
hydrodynamic stability, in which instability is expected only for large 
Reynolds numbers (Lin 1955, p. 7). Furthermore, in a later part of this 
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paper justification is found for throwing off most of the weight of an analysis 
along the usual lines of stability theory, and hence proceeding with an 
easily workable approximation which is able to give a satisfactory account 
of all the main features of wave formation in practice. A rather similar 
formulation of this problem has already been given by Yih (1954), except 
that no account was taken there of surface tension; however, since thc 
present method of solution is different and the results entirely so, there 
seems to be sufficient reason for setting out the argument completely from 
the beginning. 

The  analysis will be restricted to two-dimensional wave disturbances 
in a vertical plane (x ,y ) .  This simplification may be justified by appeal 
to the well-known argument first given by Squire (1933 ; restated by Lin 
1955, $3.1) in connection with the problem of disturbed flow between 
parallel planes. He  pointed out that any three-dimensional disturbance 
is governed by the same equations as a certain two-dimensional disturbance 
in  a similar flow at lower Reynolds number. This means that two- 
dimensional waves have a greater tendency to instability than threc- 
dimensional ones; and it follows that a two-dimensional analysis is 
completely adequate if only the stability of a flow is in question. The 
suitability of a two-dimensional analysis is further demonstrated by Binnie’s 
experiments, noted immediately below, which showed that waves at fairly 
small Reynolds numbers are very approximately uniform along the horizontal 
line of their crests. 

T h e  experimental results reported by Binnie (1957) have been found 
to provide confirmation of the theory in several important respects. These 
results were kindly made known to me during the course of my theoretical 
work, and I was encouraged by them to explore the long-wave approxi- 
mation described in s.5. The  experiments were made with vertical water 
films, and their results bear out the theoretical predictions on the following 
three counts: (i) the Reynolds number at which large amplifications of 
unstable disturbances first occur, so that observable waves develop ; (ii) the 
velocity of the wave of maximum instability ; (iii) the corresponding wave- 
length. The  theoretical argument also accounts for the irregularity of the 
observed waves. 

2. PROPERTIES OF THE PRIMARY FLOW 

T h e  laminar flow whose stability is to be examined is a uniform two- 
dimensional stream bounded on one side by a fixed wall and on the other 
by a free surface ; the fluid has constant density and viscosity. The  velocity 
U is everywhere parallel to x (see figure l), and the graph of U ZIS y is a 
parabola which has its vertex in the free surface since, as the fluid is viscous, 
the rate of shearing dUjdy must vanish there. I n  this paper the coordinates 
(x ,y )  are made non-dimensional by taking the stream depth h as the unit 
of length, so that y = 0 and y = 1 define the free surface and the fixed 
boundary respectively. Also, velocities are made non-dimensional by taking 
the undisturbed velocity at y = 0, denoted by uo, as the unit of velocity. 
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Thus we have u = 1 -y2. (2.1) 

By integration this immediately shows that the dimensionless mean velocity 
is u, = $ (i.e. in dimensional units u, = Q / h  = #uo). The motion is 
steady, so that the shear force - (pu, /h)dU/dy  on the wall is balanced by 
the total gravity force on the stream in the direction of flow ; thus 

2puo/h = phg sin 6, 

where 8 is the slope (figure 1). This gives directly 

uo = 4h2g sin Blv, 

R = Qlv = #u0 h/v  = ih3g sin 8/v2. 

(2.2) 

(2.3) 

Figure 1. Diagram of the undisturbed flow, showing the velocity profile. 

The existence of an explicit relation (2.3) between flow rate and depth 
suggests that any gradual or ‘ long-wave ’ disturbance from the uniform 
state would be propagated downstream with a (dimensional) velocity 
C = dQ/dh ( c f .  the account of ‘kinematic waves’ given by Lighthill & 
Whitham (1955)). In fact (2.3) leads to 

C = h2gsin8/v = 2uo. (2.4) 
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This simple result provides an interesting check on the subsequent analysis, 
which shows by a totally different method that very long periodic waves 
are indeed propagated with a phase velocity equal to Zu,. 

3. THE STABILITY PROBLEM 

Suppose that the free surface is given a perturbation represented by 
the equation 

where u is the dimensionless wave number (=  2rh/wavelength), and 
t is time made non-dimensional by taking h/u, as the unit. Either the real 
or the imaginary part of ( 3 . 1 )  may, of course, be taken to describe a wave 
on the physical surface. In the usual manner of stability analyses, the 
wave amplitude 6 is taken to be a small quantity whose square is negligible. 
The corresponding perturbation of the stream function may be written as 

which implies that the velocity components satisfying the continuity 
condition for incompressible flow are 

y = q(x, t )  = &ia@+f), (3.1) 

- 8 f (y)ei"@+O 

The elimination of the pressure from the linearized equations of motion 
leads to an equation for f(y) : 

V 
( U -  C)(f" - a") - U f  = - (f'" - 2ay" + a4f), 

iuu, h ( 3 . 3 )  

which is commonly known as the Orr-Sommerfeld equation (Lin 1955, 
8 1.3). After substituting for U from (2.1), it is convenient for our purpose 
to rearrange ( 3 . 3 )  in the form 

(3.4) 

( 3 . 5 )  

f" = ( n  - cn + 2a2 - ny2)f" + (2n - u2n + cu2n - u4 + u2ny2)f, 

and then 

where we have first put n = iau, h/v = 3iuR/2, and then 

f'" = ( p  + qy2)f" + (Y + s2y2)f, 

p = n - c n + 2 a 2 ;  q =  - n ;  

r = 2n - a2n + cu2n - u4 ; s2 = u2n. 
This greatly simplifies the writing-out of the subsequent heavy algebra. 

First, the 
kinematical surface condition is 

The problem entails five boundary conditions as follows. 

where U, and vo are the values of U and v at y = 0 ;  hence, because of 
(2.1), (3.1) and (3.2), 

f(0) = c -  1. (3.7) 
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This equation simply shows the connection between the assumed perturba- 
tion of the free surface and the corresponding perturbation of the stream 
function ; it bears out the intuitively reasonable expectation that, provided 
c is not excessively large, the two perturbations are of the same order of 
magnitude. Since both velocity components must vanish at the fixed 
boundary, we also have 

f(1) = 0, (3.8) 

f’(1) = 0. (3.9) 
The remaining boundary conditions relate to the continuity of stresses 

across the free surface. It is assumed that the only stress acting on the 
outside of this surface is a uniform pressure p ,  ; therefore, since the fluid 
is viscous, the rate of shearing in the stream au/ay+av/ax must vanish 
at y = 7, which requires that 

f”(0) = Z-aZ(c- 1). (3.10) 

The equation expressing the continuity of normal stress across the 
free surface may be written, after division by the density p, 

(3.11) 

wherep, is the (dimensional) pressure just inside the stream, u is the principal 
curvature of the surface, and r, which may be called the ‘ kinematic surface 
tension ’, is equal to the usual surface tension coefficient divided by density. 
T o  the first order in 6, the curvature is 

(3.12) 

Also, the pressure p satisfies the Navier-Stokes equation 
au au au a2u 

Z ax ay ax hull a x 2  
+u - +v - = - -!- 2 + {e + p}+hgsinR/u$ (3.13) 

Hence, with the use of (3.11) and (3.12), separation of the variable part 
of (3.13) (i.e. the part with 6 as a common factor) at y = 7 leads to 

1 
( n  - cn + 3a2)f’(0) =f”(O) + - (a3r + uh2g cos 0). 

VUO 
(3.14) 

The first four of the boundary conditions, (3.7) to (3.10), will be used 
to determine the four constants arising in the solution of the fourth-order 
equation (3.4). The boundary condition (3.14) will then be used to find c 
as a function of u and the parameters of the mean flow. This procedure 
resembles the usual one in stability problems (cf. Lin 1955). Instability 
is revealed for a particular wave mode when the respective c turns out to 
have a positive imaginary part, for then the mode has an exponentially- 
increasing time factor. As usual it is convenient to express the results of 
the calculations by setting down the conditions which make c wholly real ; 
cis then simply the phase velocity of a neutral disturbance. These conditions 
represent a division between stability and instability. 
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The present problem is somewhat unusual in that two stress conditions, 
(3.10) and (3.14), replace the two additional kinematic conditions, like (3.8) 
and (3.9),  which arise in problems concerning flow between fixed boundaries. 
I t  may, incidentally, be asked why five boundary conditions have been 
written down whereas most treatments of stability problems (cf. Lin 1955) 
make do with four ? However, the limited meaning of the first boundary 
condition (3.7) has already been noted above ; it contributes nothing to the 
essential characteristic-value problem, since an assumed perturbation of 
either the free surface or the stream function may equally well be taken as 
a starting point, and one simply follows from the other according to (3.7).  

The only important difference between this and the better-known 
problems of hydrodynamic stability lies in the method of solution of the 
Orr-Sommerfeld equation set out in the next section. In view of existing 
experimental evidence, attention may confidently be restricted to the case 
of fairly small Reynolds numbers and wave numbers, and indeed the end 
results of the calculation confirm the adequacy of this approach. 

4. POWER-SERIES APPROXIMATION TO THE STREAM FUNCTION 

It was Kelvin (1887) who first noted that in linearized problems like the 
present one where the function f(y) satisfies the fourth-order differential 
equation (3.4),  the solution may be expressed as an ascending power series 
in y. He demonstrated that this series is convergent for all physically 
realizable conditions, but observed that the rate of convergence is very slow 
when R is not small. The approach suggested by Kelvin is of little use 
at fairly large Reynolds numbers, with which the greater part of the existing 
work on hydrodynamic stability is concerned. For the present problem, 
however, the method is definitely useful, since the values of R and of CI are 
expected to be fairly small in the range of physical interest. 

If one formally puts 

then this series is seen to constitute a solution of ( 3 . 5 )  when the coefficients 
AN are made to satisfy the recurrence relation 

N ( N -  1)(N- 2)(N- 3)AN = ( N -  2)(N- 3)pA,,+ 

-k (?' 3- ( N -  4 ) ( N -  5 ) q ) A ~ - *  -f- S2A,, (4.2) 
for N > 3 .  This relation follows directly from the differential equation. 
The first four coefficients A, to A ,  are simply the four constants arising 
essentially in the solution of a fourth-order equation, and (4.2) gives every 
other A N  in terms of these four and the parameters p ,  q, r ,  s. If these 
parameters are now regarded as small quantities of the same order of 
magnitude, the four coefficients A, to A ,  may be said to be O(p), and each 
successive set of four coefficients is of decreasing order of magnitude with 
reference to powers of p .  From (3.4),  ( 3 . 5 )  and (3 .6)  it is seen that 
provided tc is small, then p ,  q, r,  s are of the order of n :  that is, the order 
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of uR. Thus, a limited number of terms of the series would amount to 
an approximate solution in terms of ascending powers of uR (and, 
incidentally, of u2) ; this may be contrasted to the commonly-used asymp- 
totic solutions in descending powers of uR, suitable when R is large (see, 
for instance, Lin 1955, chapter 3) .  

We choose to approximate f ( y )  in this way as far as O(p3) = O(n3),  
which requires sixteen terms of the expansion (4.1). In this procedure 
there is an implicit assumption that c is not large, which is confirmed by 
the final results. In order simply to keep symmetry in the approximation, 
terms which are O(a2), for instance, are given equal status with terms which 
are O(n), although it may be anticipated that u2 < In] (i.e. < R)  for 
the physically interesting cases discussed later. 

Although the various manipulations made with the approximate solution 
for f ( y )  are very laborious, they are quite straightforward. Accordingly, 
only an outline of the method of calculation need be given, together with 
the results of the more important stages. 

The third-order approximation to the series solution (4. l ) ,  as calculated 
by means of (4.2), is most conveniently arranged as follows: 

f ( y )  = A,[l + (1/4 !)ry4 + (1/6 !)(pr  + s2)yG + ( 1 / 8  !)( 12qr + r2 +p2r + 2ps2)y8 + 
+ (1/10 !)(2pr2 + 42pqr + 60qs2 + 32rs2)y10 + 
+ (1/12 !)(672q2r + 68qr2 + r3)y12] + 

+ (1/9 !)(20qr + r3 +p2r + 6ps2)y9 + 
+ (1/11!)(62pqr + 2pr2 + 252qs2 + 48rs2)yl1 + 
+ (1/13 !)( 1440q2r + 92qr2 + r3)y13] + 

+ A2[y2 + (2/4 !)py4 + (216 !)(2q + r +p2)y6 + 
+(2/8!)(14pq+Zp+ 12s2+p3)y8+ 
+ (2/10 !)(60q2 + 32qr + r2 + 44p2q + 3p2r + 42ps2)ylo + 
+ (2/12 !)(560pq2 + l0pqr + 672qs2 + 1 2 r ~ ~ ) y ~ ~ I  + 

+ (6/9 !)(26pq + 2pr + 20s2 +p3)y9 + 
+ (6/11 !)(252q2 + 48qr + r2 + 68p2q + 3p2r + 62ps2)yl1 + 
+ (6/13 !)(2124pq2 + 218pqr + 3pr2 + 1872qs2 + 92rs2)y13 + 

+ A l [ y + ( l / 5  !)ry5+(1/7!)(pr+6s2)y7+ 

+ A3[y3 + (6/5 !)py5 + (6/7 !)(6q + r +p2)y7 + 

+(6/15 !)(27720q3+ 5532q2r+ 158qr2+r3)y15]. (4.3) 
T o  use this result, the boundary conditions (3.7), (3.10) and (3.14) are first 
expressed in terms of the coefficients A, ; these equations give respectively 

A, = c-1, (4.4) 

2A2 = 2 - a2(c- l ) ,  (4.5) 

(4.6) 
i 

V U O  
(n - cn + 3a2)A1 = 6A3 + - (a3r + ah2g cos 8). 
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Thus, A, and A, are related very simply to the main parameters of the 
problem. T o  find A, and A, for use in (4.6), the boundary conditions (3.8) 
and (3.9) are employed. By setting equal to zerof(y) andf’(y) as given 
by (4.3), we have a pair of simultaneous equations for A, and A, in terms 
of A, and A,. The solutions of these equations are then expressed in 
ascending powers of p, q, r ,  s by a straightforward, though rather lengthy, 
inversion process. By this stage of the calculation, some of the numerical 
coefficients would become very cumbersome if left as fractions, and so all 
but the simple coefficients of the leading terms are expressed as decimals. 
Note that to satisfy (4.6) as far as O(n3), A, is required to O(n3), but A, is 
required only to  O(n2).  Accordingly, although A, was calculated to O(n3) 
to provide certain checks on the result for A,, the third-order terms in A, 
need not be reproduced here. 

After some condensation made possible by the fact that r = -2q in 
the third-order terms, the results may be expressed as follows: 

1 + ( - 0.0013 095p2 - 

- 0.0006 052~4 - 0.0003 3 7 3 ~ ~  - 0.0000 773q2 - 

- 0.0000 167qr + 0.0000 3 .57~~  + 0*0010 9 1 3 ~ ~ )  + 1 
+A,[ - + ( k p +  840 1 q-  ~ r ) + ( - 0 - 0 0 0 7 7 3 8 p 2 -  1 

- 0.0001 389pq+ 0.0001 190pr - 0.0000 054q2 + 
+ 0.0000 123qr - 0.0000 049r2 - 0.0001 9 8 4 ~ ~ )  , (4.7) 1 

+(O*O032143p2+ 

+0*001283lpq+0*0010450pr+0~0001 349q2+ 

+ 0*0000 320qr - O*OOOO 891r2 - 0.0022 4 8 7 ~ ~ )  + 
+ ( - 0.0001 759p3 - 0.0000 315p2r + 0.0000 130pr2 + 
+ 0.0000 030r3 + 0.0001 0 4 0 ~ s ~  + 0.0000 507rs2) + 1 

3 1 
+A,[ - +( - a p -  315 q +  +(0.0023413p2+ 

+ 0.0003 538pq- 0.0003 108pr + 0.0000 139q2 - 

- 0.0000 276qr + O*OOOO 1 19r2 + 0.0003 638s’) + 
+ (- 0.0001 068p3 - O*OOOO 758p2r - 0.0000 192pr2 - 

- 0.0000 020r3 - O*OOOO 445ps2 - 0.0000 122rs2) . (4.8) 1 
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When p ,  q, r ,  s are expressed in terms of n and u2 by means of (3.6), these 
results lead to 

A, = A o [  - 3 2 +( - a c n +  1 - 31 n+ 840 20 
+ ( - 0.0013 095c2n2 + 0.0026 885cn2- 0-0012 798n2 -t 

+ 0,0147 619ca2n - 0.0138 095a2n- 0.0147 6 1 9 ~ ~ ~ )  + 1 
+ A , [ - ;  +(- 1 11 

+ ( - 0.0007 738c2n2 + 0.001 1 706cn2 - 0.0004 463n2 + 
+ 0.0019 048ca2n - 0.0013 492a2n- 0.0019 048a4)], (4.9) 

A , = A  - +  - c n -  " 2 r 20 
+ (0.0032 143c2n2 - 0.0072 354cn2 + 33 

+ 0.0037 3 5 7 ~ ~ ~  - 0.0521 429ca2n + 0.0515 079a2n + 
+ 0.0521 429a4) + (0.0001 759c3n3 - 0.0004 963c2n3 + 
+ 0.0004 519cn3 - 0.0001 345n3 - 0.0032 712c2a2n2 + 
+ 0.0054 363ca2n2 - 0.0022 483a2n2 + 0-0083 413ca4n - 

- 0.0068 254a4n - 0.0065 9 2 6 ~ ~ )  + 1 
+(0*0023413~~n~-  

11 

- 0.0037 070cn2 + 0.0014 826n2 - 0.0061 905ca2n + 
+ 0.0046 032a2n + 0.0061 905a4) + (0.0001 068c3n3 - 
- 0.0002 447c2n3 + 0.0001 881m3 - 0.0000 485n3 - 
- 0.0003 300c2a2n2 + 0*0004767ca2n2 - 0.0001 729a2n2 + 

+ 0.0003 492ca4n - 0.0002 103& - 0.0002 328a")I. (4.10) 

When these expressions are substituted into (4.6) and as much condensation 
as possible is made, the result is 

( : 68 35 24> 35 
i - ( c ~ ~ I ' + c c ~ ~ ~ c o s O ) + ~ C - ~ + ~  - - c2+ - C- - +a2(5*4c-4.8)+ 

a 0  

+ n2( - 0.0057 1 4 3 ~ ~  + 0.0215 8733 - 0.0254 6 2 8 ~  + 0.0102 907) + 
+a2n( -0*1628571~~+0*3029095~-0*1397619)+ 
+ a4( - 0.1371 4 2 9 ~  + 0.0742 857) + 
+ n3( - 0.0002 5 4 0 ~ ~  + 0.001 1 4 1 2 ~ ~  - 0.0018 0 0 7 ~ ~  + 

+ 0.0012 4 1 4 ~  - 0.0003 178) + 
,+ a2n2(0.0073 9 6 8 ~ ~  - 0.0240 506c2 + 0.0257 0 0 8 ~  - 0.0090 556) + 
+ a4n( - 0.0506 6 6 7 ~ ~  + 0.0966 9 0 6 ~  - 0.0468 574) + 

+ ~'(0.0547 3 0 2  - 0.0504 127) = 0. (4.1 1) 
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This  result can be regarded as an equation for c in terms of n and a, 
hence of R and u, and of the ' restoring force ' due to gravity and surface 
tension as expressed by the first group of terms in the equation. I n  
particular, the equation can be used to find the relation between R and a 
which makes c wholly real, i.e. which gives the case of neutral stability. 
To do this, we first separate the real part of (4.11), noting that n is purely 
imaginary, and hence quite easily obtain an explicit expression for c by a 
process of successive approximation in terms of u2 and n2 = -9a2R2/4. 
We finally get, for c real, 

where the values of R and u must be consistent with the imaginary part 
of (4.11) being satisfied. The  error in (4.12) is known to be considerably 
less, due to numerical factors, than O(a4R4). Note that there is no term 
in (aR)l in (4.12) ; this result occurs by the cancellation of terms with fairly 
complicated numerical factors. (This may seem perhaps to suggest some 
special significance ; but I can see no other way of arriving at such a result 
beyond a direct calculation like the present one.) 

On eliminating c 
by means of (4.12), and using the following relations found easily from (2.2) 
and (2.3) : 

ugh = (35'3/4)(g sin 0)1'3v4/3R5/3, 
uz/h = ggsinBR, 

c = 2(1 - a 2 +  11a4/6+0.0077581~2R2-3~3555 556u6), (4.12) 

T h e  imaginary part of (4.11) is now considered. 

we finally obtain the approximation 
45 u2 4cot6 8 + 5.5289 1 4 2 ~ ~  - 3513- + 3R - 5 

- 0.0000 639a2R2- 14.6352952~~ = 0, (4.13) 
where 5 is defined by 

t: = F(g sin 0)-%-4/3. (4.14) 
Equation (4.13) expresses the required approximate relation between R 
and u for neutral stability. The  equation is easily solved, since for a specified 
value of R it becomes a quadratic in u2. 

I n  passing it may be noted that the formula for real values of c, i.e. (4.12) 
subject to (4.11), appears to differ from the result obtained by Yih (l954), 
which was presented only in graphical form. T h e  discrepancy is not 
understood. For M + 0 (i.e. for very long waves), equation (4.12) gives 
simply c = 2, which agrees with the result (2.4) obtained by a very simple 
argument. This also agrees with the result found by Kapitza (1948), 
who used a different form of argument applicable only to very long waves. 

Let us now consider, for example, the case of a vertical wall (0 = 90.). 
T h e  term involving cot 0 in (4.13) now vanishes, and we have < = I'g1/3v-4/3. 
(The parameter 5 is about 3300 for water at 19.C.) Figure 2 shows the 
relation between R and u according to (4.13) for various values of 5 and a 
range of R up to 20. The curves shown in the figure are curves of neutral 
stability; and it can he inferred that, for a particular 5, the region lying 
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above the respective curve represents stability, while that below it represents 
instability. The  following features of figure 2 may be specially noted. 

(i) Every curve for 5 > 0 passes through the origin, and has infinite 
slope there. Thus, for all finite 
values of R there is a finite range of unstable M, and therefore the flow is 
never completely stable. On the other hand, equation (4.13) shows that 
stability occurs €or sufficiently small R when 0 < 0 < 90". 

(The case 5 = 0 is discussed below.) 

" 0  I0 20 R 
Figure 2. Curves of neutral stability for laminar flow down a vertical wall with various 

values of the parameter 5 = I? g-Il3 v-413. 

(ii) T h e  stabilizing tendency of surface tension is demonstrated by the 
fact that the curves bend nearer the R-axis for increasing 5. Thus, as might 
be expected intuitively, the range of unstable M for a given R is reduced 
as I?, and hence 5, is increased. Note that surface tension cannot induce 
complete stability, although it may stabilize waves whose length is less than 
a certain limit. 

(iii) The  curve according to (4.13) for 5 = 0 is included in the figure, 
being shown as a broken line, although the values of M in this case are rather 
too large for confidence in the accuracy of the result. (We recall that the 
theory has been developed on the assumption that M. is fairly small.) 
However, the trend of the other curves in the figure shows definitely that 
the unstable region of the (R,M)-chart is largest when 6 = 0. This fact 
is useful, since it seems to rule out the possibility that the neglect of surface 
tension in Yih's treatment of the problem may be responsible for the 
discrepancy between his and the present general conclusions regarding 
stability, 
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In connection with the general role of surface tension in the mathematical 
problem, the following matter is worth noting. Equation (4.13) shows 
that u + O(R516/[1'2) for R + 0 with 0 = 90". Thus, for small R the curve 
u vs R5I3 is a parabola whose vertex touches the u-axis at the origin. The 
curvature at the vertex is directly proportional to 5, and so in the limit 
5+0 the curvature is zero and the curve coincides with the u-axis. I t  
may hence be inferred that the curve u vs R also coincides with the a-axis 
for [ + 0, although for this curve the curvature at the origin is infinite for 
for all finite values of 5. Clearly, the same result should occur if surface 
tension were ignored (i.e. 1; = 0) from the outset of the analysis, and so 
one might question why no such result is forthcoming if we put directly 
[ = 0 and 0 = 90" in (4.13). However, in proceeding from the dimensional 
form of the dynamical equation (3.13) to as far as (4.13), a division of all 
the terms by ugh, which is proportional to R5I3, has been entailed. Hence, 
to preserve the appropriate ' physical ' status of surface tension with respect 
to the limiting process R 0, equation (4.13) should be multiplied by R5I3; 
when this is done there is no ambiguity about the fact that R = 0 is a 
solution regardless of u when 1; = 0. This result that the flow is unstable, 
or at least neutral, for all finite R and u seems correct intuitively, since for 
a vertical wall and zero surface tension there is no restoring force to act 
on the disturbed flow. 

(iv) Owing to the particular method of approximation used for the theory, 
the most accurate part of the figure is the vicinity of the origin. The upper 
half, at least, of the figure is somewhat uncertain ; but the figure as a whole 
is quite adequate as a qualitative picture of the neutral-stability conditions. 
Moreover, the line of argument to be developed in 5 5 shows that it is sufficient 
to consider a range of R and u very near the origin to account satisfactorily 
for the relevant experimental facts. 

5. SIMPLIFIED THEORY FOR LONG WAVES 

In  this section some formulae are derived which are suitable for a 
straightforward check with experiment. I n  contrast with the results of 
the last section, they are compact and easily manipulated; and although 
these advantages are gained by sacrificing the higher-order terms calculated 
in $4, the loss of precision entailed is found not to be serious. Let us 
therefore proceed on the assumption, to be justified later, that u is quite 
small. Our knowledge of the second- and third-order terms in (4.11) 
shows conclusively that a valid first approximation to this equation is 
simply 

{ 68 24} = 0. (5.1) - { u ~ I ' + u ~ ~ ~ c o s ~ } + ~ c - ~ +  - iuR - - c2+ - C- - z 

V U O  2 35 35 
Suppose now that c = c,+ici, where c, and ci are wholly real, and that 
c, 9 ci. The latter assumption will also be justified later. On separation 
of real and imaginary parts, equation (5.1) gives, as a first approximation, 
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and hence 

(5.3) c i =  i R ( ~ ~ -  1 
- a3r - ahg cos 0 

h u$ G 
Therefore, since unstable waves have ci > 0, the condition for instability 
is 

Some special cases following from (5.4) deserve to be noted. If one puts 
a --f 0 in (5.4) and substitutes (2.2) and (2.3) in the second term on the right- 
hand side, this instability condition becomes 

C 
J 

R > - CotB. 
6 .  (5.5) 

Thus, when (5.5) is just satisfied, very long waves (a  --f 0) become unstable. 
Moreover, if surface tension is zero, all fairly long waves are unstable 
when (5.5) is satisfied, which rather suggests that in practice a bore (in 
other words, a discontinuous 'roll wave') would be formed. It  is notable, 
though not at all unexpected, that except for the numerical factor the 
instability condition (5.5) is identical with the condition found by Jeffreys 
(1925) for the formation of roll waves on a turbulent stream, assumed to be 
subject to the ChCzy law of friction. Indeed, the present result can be 
deduced directly, with only a very small discrepancy in the numerical 
factor, from the roll-wave theory developed by Dressler (1952) for a 
generalized law of friction. The details of this comparison need not be 
given here ; it is sufficient to note that the result follows in a straightforward 
way when the primary-flow relationships for laminar flow (as in $2) are 
introduced into Dressler's generalized instability condition. 

The action of gravity may be expected to encourage instability if 0 > 90", 
that is, if the fixed wall slopes backwards and the stream runs down its 
under side. The ability of liquid streams to adhere beneath solid surfaces 
is popularly known as the 'tea-pot effect', and will be familiar to any one 
who has poured liquid from a vessel with an ill-designed spout. The 
destabilizing influence of gravity in this case is properly expressed by the 
gravitational term in (5.4), which becomes negative when 8 > 90". As 
an extreme case, let 8 = 180" and hence uo = 0 in accordance with (2.2). 
The liquid now forms a stationary film on the under side of a horizontal 
plane, and the instability condition (5.4) becomes 

gh2 > a T ,  
or 

if the wavelength X = 2 d / a  is introduced. This is seen to check with 
the result obtained by Bellman & Pennington (1954, equation (3.7)), who 
calculated the effect of surface tension on the Taylor instability of the 
boundary between two fluids accelerated perpendicularly to its plane 

A > 24r/g)1/2, (5.6) 
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(Taylor 1950). ( I t  should be noted that the effect of gravity is here equivalent 
to an upward acceleration.) 

The  final special case which we shall discuss arises when % = 90", that 
is, when the fixed boundary is vertical. This is the case for which a 
comparison between theory and experiment will be made in $6, and also 
the one in which there is marked disagreement between the present work 
and that of Yih (1954). The  rest of this section will be devoted to it. 

For 8 = 90°, (5.4) becomes 

Hence, the flow is always unstable, since sufficiently small values of a can 
always be found to satisfy this instability condition; indeed, this fact is 
already clear from the discussion at the end of 5 4 and also from (5.5), which 
becomes simply R > 0 when % = 90". As pointed out in an early part of 
this paper, this result is remarkable in view of existing experimental work 
on vertical liquid films, much of which seems to indicate an absence of waves 
at  sufficiently low Reynolds numbers. However, the following straight- 
forward argument appears to  bring the present theory into a completely 
satisfactory agreement with experiment, in particular the work mentioned 
in 86. 

It is reasonable to suppose that the wave most prominent in an 
experimental observation will be the one whose rate of growth according 
to  linearized theory is largest. The  use of such an assumption has many 
precedents; for instance, Rayleigh (1894, 5 87) discussed its theoretical 
basis, and used it in several of his investigations. There is various experi- 
mental evidence to suggest that often the growth of a 'wave of maximum 
instability ' eventually, through non-linear effects, tends to suppress other 
waves which are unstable according to linearized theory but have smaller 
rates of growth ; thus, the well-defined pattern of the particular wave mode 
of greatest rate of amplification may be observed (see Benjamin & Ursell 
1954 for a discussion of this point in a rather similar context). In  the 
present problem unstable waves grow in amplitude according to a time 
factor exp(ac,t). T o  find a for the most unstable wave, we have therefore 
only to maximize aq, which, by virtue of (5.3), amounts to maximizing the 
function 

8 a4r 

? a 2 -  hu;4' 

Hence, the optimum value of a (say am) is given by 

When the formulae of 8 2  for the primary flow are used (with 8 = 90") to 
eliminate u,, and h from this expression, it leads directly to 

am = 1. 12{v2/3giier-1/2}~5/gJ (5.9) 

F.M. 2 Q  



570 T. Brooke Benjamin 

where the numerical factor is an approximation to (3/5)1/231/3. This together 
with (5.3) shows that the maximum value of ci is 

The quantity within the braces in (5.9) and (5.10) depends only on the 
particular liquid considered. For example, taking the values appropriate 
to water at 19" C:  v = 0.0103 cm2/sec and r = 72-9 cm3/sec2, and also 
g = 981 cm/sec2, we get from (5.9) and (5.10) 

(ci), = 0.224(v2/3gl/6r-lB2}Rll66. (5.10) 

a, = 0*0195R516, (5.11) 
(cJ, = 0*00391R11/6. (5.12) 

Provided R is not much greater than unity, these results justify the initial 
assumptions that u and ci are small. 

Now, to illustrate the likelihood of waves being observed experimentally, 
we shall calculate the amplification experienced by the wave of maximum 
instability on a vertical water film as it travels a distance of 10 cm. Since 
the wave velocity is approximately 2u0, the amplification factor is approxi- 
mately Hence, using (5.11) 
and (5.12), and eliminating h by means of the primary-flow relations of 5 2, 
we finally get 

a2 = exp{0.0543R8'3). (5.13) 
Values of sit given by (5.13) are plotted as a function of R in figure 3. The 
figure shows the amplification to be large only for values of R greater than 
about 4 ; above this the rate of increase of @' is enormous. Thus, one might 
expect observable waves to develop reasonably near the beginning of the 
stream as soon as the Reynolds number is brought up to a value near 4. 
Of course, the linearized theory ceases to apply when large amplifications 
occur ; but the present result does seem to offer a convincing explanation 
of why, in experiments where the Reynolds number is gradually increased 
from small values, waves should suddenly appear on a previously untroubled 
stream. However, it has been shown here that a critical Reynolds number 
in the usual sense does not exist for a vertical stream ; for, even when the 
Reynolds number is extremely small, there are unstable waves which, 
presumably, would grow to appreciable size if the stream were long enough. 
The present result suggests that experimental measurements of the ' quasi- 
critical' Reynolds number (Rqc say, which seems from the theory to be 
about 4 for water) may depend to a large extent on the method and precision 
of the observations (even perhaps on the eyesight of the observer); this 
may explain the wide scatter among existing estimates. Note that the value 
of R depends in a fairly complicated way on the kinematic surface tension 
and viscosity ; according to the present theory, it is definitely not the same 
for different liquids. 

I n  conclusion a formula for the dimensional wavelength A, corre- 
sponding to the most unstable wave number u, is worth noting, being more 
convenient than (5.9) for comparison with experiment. Putting A,, = Zxh/u,,, 
and using (2.3) and (5.9), we find that 

(5.14) 

= exp(10am(ci),/2h}, where h is in cm. 

qc. 

A, = 8.1 1 {rWg-l/Z}R-lI2. 
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For water at 19" C, this gives 

h, = 2.2111-1/2 cm = 0.871R1/2 in. (5.15) 

This is suggested as the most likely wavelength of observed disturbances, 
at least when instability first becomes noticeable, and a wave structure can 
be distinguished. 

0 2 4 1 7  
Figure 3. The amplification experienced by the most unstable wave on a vertical 

water film as the wave travels 10 cm. 

Nevertheless, one can scarcely expect waves to appear with a strictly 
uniform and distinct periodicity ; because under all conditions infinitesimal 
waves with a wide range of wavelengths are unstable, and the wave with 
length A, comes into prominence only through a rather uncritical selection 
process depending on differences in the rates of amplification at different 
wavelengths. The  ultimate state of the amplified waves is, of course, 
determined largely by non-linear effects which remain unknown. 

6. COMPARISON WITH THE EXPERIMENTS BY BINNIE 

T h e  reader may refer to the paper by Binnie (1957) for an account of 
these experiments, which were carried out with water at 19" C. The waves 

Z Q 2  
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described by him were somewhat irregular in length even when the flow 
was delicately adjusted until the waves were just perceptible (see the 
photograph in his paper). This feature is understandable from the con- 
siderations made in the final paragraph of $5, and suggests the unlikelihood 
of a very precise agreement between experiment and any linearized theory. 

(i) T h e  Reynolds number at which observable waves first occur was 
estimated experimentally as 4.4. Although the theory does not provide a 
correspondingly precise estimate, this value appears quite reasonable in the 
light of equation (5.13) and figure 3. 

(ii) T h e  records of wave velocity and length were taken when the 
measured value of Q was 6.9 x On the substi- 
tution of this value and the value of v quoted in $ 5  for water at 19"C, 
equations (2.2) and (2.3) (with 8 = 90') lead to h = 4 . 4 ~  loA3 in. and 
hence Zu, = 4-7 in./sec. According to (5.2) the latter figure is the first 
approximation to the wave velocity. The  mean experimental value for the 
wave velocity was 5.5 in./sec, i.e. 17% in excess of the theoretical estimate. 
T h e  order of magnitude of the extra terms involved in an approximation 
to c, better than (5.2) is found to be too small to account for this discrepancy, 
which seems more likely to be due to the finite size of the measured waves. 
(The velocities of other kinds of surface wave are known to increase with the 
wave amplitude; e.g. irrotational waves in an inviscid fluid (Lamb 1932, 
9 250).) However, the comparison seems quite good in view of the obvious 
limitations of linearized theory in this type of investigation ; in any case, 
it appears definitely to support the present theoretical results in favour of 
those found by Yih (1954) which indicate that the wave velocity should be 
many times greater than the experimental values. 

(iii) With R = 4.4 as measured, equation (5.15) gives A, = 0.42 in. for 
the most unstable wavelength. This is in surprisingly close agreement 
with the value 0.45 in. obtained as the mean of the experimental observations. 

The  above three items seem in large measure to confirm the usefulness 
of the simplified method developed in $ 5.  However, further experiments 
would be necessary for a complete check; for instance, measurements 
of R,, for different liquids would provide a particularly severe test. Suitable 
experiments on films with a finite slope would be more difficult than those 
on vertical films, since the convenience of a cylindrical wall is lost and 
difficulties with edge effects are bound to arise, but such experiments would 
be very desirable. 

I wish to acknowledge the encouragement given throughout this work by 
M r  A. M. Binnie, and his invaluable help in checking the lengthy algebraic 
calculations of $4. I should like also to express my thanks to Professor 
T. R. C. Fox, who first stimulated my interest in this problem, and to 
Dr G. K. Batchelor, who noticed that a powerful criticism based on energy 
considerations could be brought against my results for a vertical stream ; 
this proved indecisive in the end, but led to a helpful clarification of some 
aspects of the problem. 

The  three main points of comparison are as follows : 

in.3/sec per inch span. 
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NOTE ADDED AT PROOF STAGE 

I n  the course of a recent correspondence with Prof. C.-S. Yih, light has 
been thrown on the possible reasons for the discrepancy between the present 
results and those published by him in 1954, to which frequent reference 
has been made in the text above. He has also kindIy communicated some 
valuable comments on general aspects of the stability problem. It seems 
desirable that the main points to have emerged from the correspondence 
should be put on record here, particularly since this may obviate the con- 
fusing position which the differences between our two papers may other- 
wise have created. T h e  points listed for convenience as follows are all due 
essentially to  Prof. Yih, although the wording is chiefly mine. 

(1) The  direct numerical method used by Yih (1954) in calculating the 
neutral stability conditions for a vertical film was based on only two terms 
of a certain series expansion, and was rather sensitive to small computa- 
tional errors. Thus, although his results were an effective demonstration 
of the low Reynolds numbers at which instability can be expected, they 
cannot be relied upon as more than a rough indication of the range of 
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unstable conditions ; in particular, they cannot be held to confute the 
present precise results concerning instability near the origin of the (R ,  a)- 
diagram. 

(2) In unpublished work, Yih has obtained a proof that, for a vertical 
film, disturbances with sufficiently large wave number are stable irrespec- 
tively of surface tension or Reynolds number. This conclusion is perfectly 
in accord with the present work, although beyond its scope since the nature 
of the approximations introduced here preclude an accurate account of 
very short waves. 

(3) The case of zero wave number (i.e. indefinitely long waves) is some- 
what ambiguous from the mathematical point of view. For the long-wave 
approximation used in this paper, the wave number is taken to be small 
enough for its square to be negligible but remains a finite quantity through- 
out the calculations. This approach, which seems the most reasonable 
physically, reveals instability in a vertical film even for vanishingly small 
wave numbers. On the other hand, the long-wave case might be ap- 
proached by setting the wave number equal to zero from the start. This 
step corresponds to a strictly uni-directional disturbance, with the free 
surface entirely undisturbed and undisplaced. In fact, the disturbance 
need not be infinitesimal, since the Navier-Stokes equations can be exactly 
solved. Yih has observed that the latter approach leads to a result indicat- 
ing stability. This result appears to indicate that there is a higher mode 
which is always damped at zero wave number. 

(4) The distinctive features of this problem, notably the instability of a 
vertical film at all Reynolds numbers, all stem from the fact that the energy 
supply to the flow is from gravity potential-in contrast to, say, the energy 
supply from the free stream in the case of boundary layers. If gravity were 
absent, any motion of the film would eventually be damped out ; in this 
sense the film would be stable, although, of course, any form of static dis- 
turbance is neutral when surface tension is also absent. 

(5) From the mathematical point of view, a distinctive feature of the 
problem is that the complex wave velocity c appears not only in the differ- 
ential equations but also in the boundary conditions. This fact, in addition 
to those presented in the last three items, points to the possibility that for 
each pair of values of R and CI there may be two values of c-one for the 
primary mode and one for the higher mode. There are no numerical 
results for this possible higher mode, which in any case is not as 
significant physically as the primary mode. 


